Exponential Ergodicity and β-Mixing Property for Generalized Ornstein-Uhlenbeck Processes

نویسنده

  • Oesook Lee
چکیده

The generalized Ornstein-Uhlenbeck process is derived from a bivariate Lévy process and is suggested as a continuous time version of a stochastic recurrence equation [1]. In this paper we consider the generalized Ornstein-Uhlenbeck process and provide sufficient conditions under which the process is exponentially ergodic and hence holds the exponentially β-mixing property. Our results can cover a wide variety of areas by selecting suitable Lévy processes and be used as fundamental tools for statistical analysis concerning the processes. Well known stochastic volatility model in finance such as Lévy-driven Ornstein-Uhlenbeck process is examined as a special case.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized fractional Ornstein-Uhlenbeck processes

We introduce an extended version of the fractional Ornstein-Uhlenbeck (FOU) process where the integrand is replaced by the exponential of an independent Lévy process. We call the process the generalized fractional Ornstein-Uhlenbeck (GFOU) process. Alternatively, the process can be constructed from a generalized Ornstein-Uhlenbeck (GOU) process using an independent fractional Brownian motion (F...

متن کامل

Generalized Ornstein-Uhlenbeck Processes and Extensions

The generalized Ornstein-Uhlenbeck process Vt = e −ξt ( V0 + ∫ t 0 edηs ) , t ≥ 0, driven by a bivariate Lévy process (ξt, ηt)t≥0 with starting random variable V0 independent of (ξ, η) fulfills the stochastic differential equation dVt = Vt−dUt + dLt for another bivariate Lévy process (Ut, Lt)t≥0, which is determined completely by (ξ, η). In particular it holds ξt = − log(E(U)t), t ≥ 0, where E(...

متن کامل

Lower Estimates of Transition Densities and Bounds on Exponential Ergodicity for Stochastic Pde’s B. Goldys and B. Maslowski

A formula for the transition density of a Markov process defined by an infinitedimensional stochastic equation is given in terms of the Ornstein Uhlenbeck Bridge, and a useful lower estimate on the density is provided. As a consequence, uniform exponential ergodicity and V-ergodicity are proven under suitable conditions for a large class of equations. The method allows us to find computable bou...

متن کامل

2 00 3 A functional central limit theorem in equilibrium for a large network in which customers join the shortest of several queues

We consider N single server infinite buffer queues with service rate β. Customers arrive at rate N α, choose L queues uniformly, and join the shortest one. The stability condition is α < β. We study in equilibrium the fraction of queues of length at least k ≥ 0. We prove a functional central limit theorem on an infinite-dimensional Hilbert space with its weak topology, with limit a stationary O...

متن کامل

The Stationary Distributions of Doubly Skew Ornstein-Uhlenbeck Processes and Markov-modulated Skew Ornstein-Uhlenbeck Processes

In this paper, we consider the stationary density function of the doubly skew Ornstein-Uhlenbeck process. We present the explicit formula for the stationary density function and show that this process is positive Harris recurrent and geometrically ergodic. We expand our method to the more general cases in which the multiple parameters are present and we try to consider the stability of the skew...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013